
The Product Attribute Database (PAD):
First of A New Class of Productivity Tools for Product Development

Joel C. Sercel Thomas F. Clymer William M. Heinrichs
Principal Engineer Associate Engineer Associate Engineer

Jet Propulsion Laboratory Jet Propulsion Laboratory Jet Propulsion Laboratory
California Institute of Technology California Institute of Technology California Institute of Technology

Pasadena CA 91 109 Pasadena CA 9 1 109 Pasadena CA 9 1 109

sercel@earthlink.net
www.icsassociates.com

(8 18) 354-4044

tclymer@pop.jpl.nasa.gov
(8 18) 354-8439

wmh@maill.jpl.nasa.gov
(818) 354-3559

Abstract

The Product Attributes Database (PAD) is a new type of
information system that serves as a single, network-
accessible repository of all the essential parametric
information that describes a project at any phase of
implementation. PAD goes beyond previous engineering
databases in that it includes both a human interface and a
machine interface. The machine interface allows a variety of
engineering and administrative tools to work together
through the database over a network.

number of Versions for each Parameter. A project’s
database is organized according to its Product Breakdown
Structure (PBS). PAD has been beta tested and is in initial
use phases with a few flight projects at JPL.

TABLE OF CONTENTS

1. INTRODUCTION
2. PAD ROLE IN A PROJECT INFORMATION SYSTEM
3. PAD ORGANIZATION AND BEST PRACTICES
4. DATABASE SCHEMA AND SECURITY
5. APPLICATION PROGRAMMING INTERFACE (API)
6. SPREADSHEET TOOLS

The PAD information architecture includes interfaces to
several systems including trades models, high-end
engineering design and analysis tools, cost estimation tools,

7. STATUS AND FUTURE PLANS
8. ACKNOWLEDGEMENTS
9. BIOGRAPHIES

design test and verification systems, documentation tools,
and data display to support integrated concurrent
engineering. The human interface is through an application
called the Product Attributes Conversation Tool (PACT)
which includes a simple Graphical User Interface (GUI) that
allows project team members to read and write to the PAD
from any network accessible computer. PACT allows
project team members to quickly access PAD data remotely
for individual use supporting design and analysis or for
group use to support real time collaborative engineering.

The PAD’S automated machine interfaces include a range of
tools. At the low end of the range are “apparently” simple
Publish and Subscribe “sheets” that can be placed into a
workbook to allow the user to link spreadsheet calculations
to the database. At the high end of the automated machine
interface is an API that allows advanced engineering design
and analysis tools to link directly to the database over a
network.

The PAD database schema was developed concurrently with
a naming convention and a security system to allow users to
know exactly where to look for a specific design parameter
and how to name a new parameter that is to be added to the
database. The system is arranged on the basis of Products,
Attributes, and States to form Parameters, and an arbitrary

1 . INTRODUCTION

The Need

The recent development of advanced software applications
for engineering design and analysis has produced domain-
specific productivity solutions that can increase the
productivity of individuals or small groups working within
technical disciplines. Mechanical Computer Aided Design
(CAD) and Computer Aided Engineering (CAE) tools are
examples of domain-specific productivity solutions and are
analogous to similar tools in the fields of electrical
engineering, mission design, software development, and
system engineering. Transfer of data, specifications, and
design changes between tools in different domains is
typically slow, labor intensive, and costly. Unfortunately, as
product architectures become increasingly integrated, the
transfer of data between applications designed for use in
different domains becomes more important. As development
cycle times shorten, the rate at which data transfer must be
accomplished increases. Given these trends, domain-isolated
application software can actually reduce worker
productivity.

Organizations faced with this dilemma usually apply one or
more of several possible solutions in various combinations.
One approach is to capitalize on recent developments in

mailto:sercel@earthlink.net
http://www.icsassociates.com
mailto:tclymer@pop.jpl.nasa.gov
mailto:wmh@maill.jpl.nasa.gov

Application Program Interface (API) and object linking
technology including OLE (Object Linking and Embedding)
and CORBA (Common Object Request Broker
Applications). These standards have made it possible to
develop individual customized tools that link applications
from disparate disciplines. Another approach is to include
only tools that use data files based on standards such as
IGIS, DXF, or STEP. Most recently, several commercial
product development environments have been attempted
which integrate a preselected set of tools into a unified
development environment by capitalizing on a combination
of file standards and interface technologies.

Each of these approaches has significant merit and is
appropriate to implement in some settings. However, none
are without problems. For example, developing a custom
API that allows two tools to work together is a fine solution
in many cases. However, a typical aerospace project requires
tools from 10 to 15 disciplines to work together, and
sometimes each of these disciplines requires two or three
tools. If a custom API is required between each pair-wise
combination of some number n of tools the total number of
APIs that must be developed goes roughly as n(n-l)=n2.
Realistically, to completely integrate the design and analysis
tools for a typical aerospace company or laboratory this
implies the development of over a hundred pair-wise sets of
APIs. For this reason, no organization that we know of has
come close to fully integrating their tool sets. For those
leaders in the fields that have integrated a fair number of
tools into closely related groups, the investment required has
been large.

A practical lesson learned from some of these activities has
been that once a set of tools has been integrated through
API's, tool maintenance becomes a serious concern. For
example, it becomes difficult to upgrade to new releases of
the various tools because the user organization must upgrade
and debug the API to handle any changes before allowing
users to utilize the new version. Data format standards are
also a vital part of the solution to the tool integration
problem and will become more important in the future as
standards become more universally adopted, comprehensive,
and robust. For now, and into the near future, practical
experience suggests that in most cases the needs of tools in
different discipline areas are different enough that some type
of custom wrapper or file translator is or will be required to
adapt the outputs of one tool to the needs of another, even
when the use of standards is attempted.

For some companies, especially those with products,
processes, and tools that are typical of others in their
industry, bundled third party integration environments can
be a good practical solution to these problems. However, the
practical challenge faced with the use of many third party
integration environments include many of the maintenance
issues associated with custom API sets, except that the APIs
are now out of the control of the user organization and the
user organization becomes fatally dependant on the
integrating supplier. Fees can start low and then climb. If the
supplier of the integrating environment does not support a
given tool that your organization needs, you are out of luck.

Alternatively, if the integrating environment includes tools
to allow custom integration, the use of these tools typically
increases licensing fees andfor comes with significant
training and learning curve issues for in-house developers.
In short, vendor supplied integration environments force you
to use the tool suite they provide or pay, one way or another,
for custom integration.

The cost of developing interfaces between tools using any of
these approaches is frequently found to be high. All too
often the result is that organizations still turn to the user-
engineers and require them to either manually edit files for
translation between applications, or to recreate the same
design information in multiple tools. This approach is
particularly worrisome because it introduces tremendous
opportunities for human error and it makes design
configuration management problematical. It also makes the
product development process brittle even to small design or
requirements changes that are inevitable in the real world.

The Approach

The topic of this paper, the Product Attributes Database
(PAD), is an attempt to find a solution to this problem that is
inexpensive to implement yet provides many of the
advantages of the other integration approaches. While the
PAD is not a panacea for these issues, it does go a long way
toward ameliorating serious problems. The PAD also
provides a powerful interface to the most important
component of any development project, the people. It does
this in part by collecting and organizing project data into a
human readable format that any member of the team can
access and link to documents, reports, and presentations.

The PAD system consists of several components. First, the
PAD itself is a relational database that has been developed
in the Oracle Relational Database engine. Second, interface
between the PAD database and most high-end engineering
and documentation tools is done through a single C-
Language Application Program Interface (C-API). Third, the
PAD system includes a very simple Graphical User Interface
(GUI) application called the Product Attribute Conversation
Tool (PACT) that allows individual users and teams doing
real time collaborative design to query the database and
obtain human-readable product and development
information with minimal training and no knowledge of the
underlying database technology. Fourth, the PAD system
includes interfaces to standard desktop applications through
spreadsheets that allow the unsophisticated user to link PAD
data to-from any spreadsheet, presentation, or document that
can read and write to Microsoft Office. Finally, the PAD
system contains a training program covering best practices
and naming conventions that teaches users how to
effectively organize, store, and retrieve data.

This Paper

This paper provides a summary description of the PAD
system starting with this introductory material in Section 1.
Next, Section 2 provides a summary overview of the PAD'S
role in a project information system showing its interfaces to

different tools and systems as it is being implemented at
JPL. Section 3 describes the best practices guidelines and
recommendations that the PAD team has developed based
on a literature review, and more importantly on lessons
learned in pilot activities with users projects. The database
schema and security systems are outlined in Section 4. The
API that links the PAD to other tools is described in Section
5. The specific example of spreadsheet tools is described in
more detail in Section 6. Finally, the status of and plans for
the PAD system are outlined in Section 7.

2. PAD ROLE IN A PROJECT INFORMATION SYSTEM

The PAD system has been designed to be the major
integrating tool in the information system that supports a
product development project. This role is depicted in Figure
1, which shows a simplified schematic of the PAD'S
interface to other information systems. As Figure 1 shows,
the PAD database talks to several classes of tools including
the PACT, requirements documentation systems, simple
systems engineering and accounting tools, high-end
engineering models, a Project Data Management System
(PDMS), a Flight Systems Testbed, and a Mission Data
System (MDS) or software development environment.

Our discussion of these interfaces will start at the top of
Figure 1 with the PACT. The PACT, which is described in
more detail in Section 6 of this paper, is a productivity

application that allows users to read and write to and from
the database and browse and search the database in many
ways. We have also recently initiated a Java-based version
of the PACT that will support both a stand-alone
application, and a web-based implementation. This Java
development is scheduled to be in beta test this spring for
release in the fall.

We have found that many engineers, administrative support
personnel, and managers use or develop their own simple
models expressed in many different types of spread sheets in
many ways. A major area of productivity loss for aerospace
projects is the time spent hunting for the information that is
used in these simple models and the distribution of the
results. The PAD system addresses this issue through an
uncomplicated system of "publish and subscribe"
spreadsheets, which are depicted to the right of the PACT in
Figure 1. These spreadsheets, which contain code that uses
Open Database Connectivity (ODBC) drivers and Structured
Query Language (SQL) that is transparent to the user, allows
unsophisticated users to link any variable in any Excel
workbook to any data in a PAD that they have the
appropriate read-write authority for.

The Publish and Subscribe spreadsheets are available to
users either as a standalone workbook for integration with
new spreadsheets, or as an Excel Add-In that adds the PAD
interface to their existing Excel tool menu. Two particular

models have been integrated using the Add-In, the JPL
Project Cost Model, and the Outer Planet Solar Probe (OP-
SP) Project Trades Model. To give an idea of how much
work is involved in integrating a tool with a PAD, JPL
Parametric Cost Model integration, which involved reading
about 50 technical parameters from the PAD and writing
several new cost parameters back into the PAD, took about
an hour. The OP-SP PTM, which has a few hundred
parameters, took an undergraduate engineering student
working as an intern about two days to integrate. This PTM,
which is typical of trades models used for rapid exploration
of a project’s design space, now gives the project system
engineer the ability to do what-if studies either from the
privacy of hisher office, or in a group setting with a
technical team. The tool allows the engineer to access the
best and latest design information produced by team
members wherever they are on the network. Results can be
immediately relayed to the team through the PAD.

Another application of the PAD system is the integration of
detailed engineering tools through a single interface rather
than requiring the developing of n-squared APIs. As
described in a bit more detail in Section 5, this is
accomplished by our C-API, which is a very simple interface
that has been successfully integrated with every high-end
tool we have attempted to work with. The C-API is easy to
integrate with high-end tools because it does not require a
complex file transfers or sophisticated queries. Rather, the
user of the high end tool also takes advantage of the PACT
to find out what they need and where their data goes in the
database, then they can implement a simple parameter read
and write via a publish and subscribe paradigm.

The publish and subscribe paradigm is an important part of
the PAD use scenario and is implemented in the interface to
Microsoft Office through the publish and subscribe sheets,
and to the high-end tools through the API. The concept is
that users select groups of data they need to run their tool to
get their job done. At the beginning of a design or analysis
session they push a “subscribe” button which pulls up the
latest version of all their requested data along with meta-data
that includes information on who created the information,
references to the project library for more background
information, and caveats and limitations on how the data
should be used. They then run their tool using those parts of
the data set that they deem useful. Only when they have
developed data needed by others do they push the publish
button, which asks them to include the meta-data that places
their work in the context that others will need to apply the
results.

Publish and subscribe interfaces have been built between the
PAD and several high end tools as listed in the diagram. An
important tool for JPL is the Matlab, which is used
extensively in JPL optics system and interferometer
development projects using a Matlab-specific tool called the
Integrated Model for Optical Systems (IMOS). In addition
to Matlab and the other listed tools we are also building
interfaces to tools from other disciplines including for
example mechanical CAD and CAE systems.

While the PAD is not a formal design configuration
management or Project Data Management System (PDMS),
it does utilize such systems and works with them. At JPL the
implementation of formal design configuration management
is through a PDMS system that is based on the Sherpa
application suite. The interface between the PAD and PDMS
works through a utility that archives a version history of all
PAD data that is web-accessible in PDMS. The utility also
makes it possible to automate the process of establishing a
project PDMS system by populating a Product Breakdown
Structure (PBS) in PDMS automatically from PAD data.
The interface to the PDMS system is still in development
and we expect to be operational with this utility by the end
of May.

PAD system applications are not limited to design and
analysis. As tested versions of technical parameters that are
produced by in facilities such as JPL’s Flight System
Testbed are also being integrated with the PAD through the
C-API using the publish and subscribe paradigm. Using this
approach, a test engineer can read test requirements directly
from the network to his test station and can then conduct
tests. Results of tests can then be read back into the database
at near real time giving cognizant engineers extremely rapid
and timely reports of test results. This capability is presently
available and is being tested in a pilot study.

The interface to the software development system is still
very early in its development cycle. The plan is to make it
possible for software developers who are writing software
that will be resident on flight hardware or which is critically
dependant on flight hardware to be able to subscribe to the
relevant technical parameters as part of the routine process
of software development. One envisioned application is the
development of a utility that subscribes to technical
parameters that are needed for .h files at software build or
compile time. This utility would obtain the most up-to-date
approved values of the various parameters and look for
changes that are required in the build.

The PAD system has several interfaces to project
documentation. The previously mentioned link to spread
sheets makes it possible to tie any technical information in
any project document to the project database for machine
assisted updates. More powerful documentation tools such
as DOORS, which JPL uses to track requirements flow on
several projects have also been integrated with the PAD.
Another important feature of a project information system is
a project library. Documents tied to the PAD can be stored
and retrieved by project personnel through a web-based
project library using any one of a number of COTS
technologies. Xerox Docushare is an example of a system
that we have tested and proven to be compatible with PAD
technology.

3. PAD ORGANIZATION AND BEST PRACTICES

The aerospace industry has a long history of bad experiences
with database information systems. Frequently these systems
take more work to maintain then they save and some have

become so cumbersome that they are abandoned even after
the investment of millions of dollars. Our experience is that
this can happen for many reasons including a failure of the
developers to understand the actual engineering process or a
failure of the users to apply best practices in the use of the
database. To ensure that the PAD tools are effective, we
have developed them in close collaboration with actual
space project development teams. We have applied an
incremental test-build-test-build philosophy where we do not
add another layer of functionality until we have determined
that the existing system does what it needs to do for the
users.

In this process we have found that untrained users or users
who ignore best practices can populate the database in such
a way that they can not find what they need, or can not use
what they find. The only way around the garbage-in-
garbage-out factor is to ensure that the data that goes into
the system is as "good" as possible and that processes are in
place for continually monitoring and improving the extant
data. A requirement for ensuring that a minimum of bad data
goes into a database is that the project personnel know how
the PAD data is organized and structured and that they are
aware of the best practices. An overview summary of this
information is presented here to communicate a sense of
what is involved.

The first aspect of best practices is determining what should
and should not go into a PAD. It is actually more important
to know what should not go into a PAD because too much
extraneous information can make the system confusing and
difficult to use. The following classes of information are not
suitable for inclusion in a PAD system:
0 Information that only one member of a project team

needs or uses.
0 Information that is not best kept in an atomic parameter

format, e.g.:
Bit streams
Data files
Documents

It is natural to ask what should go into a PAD. The answer
includes:

Parametric technical data
Data that is needed by more than one person

0 Data that effects the design of the product
0 Data that can be read into or out of a tool using the C-

Data that fits the PAD naming conventions
API

To determine if a given set of data fits the PAD naming
conventions, it is necessary to understand that the logical
organization of PAD data starts with a Product Breakdown
Structure (PBS) and includes the definition of Parameters,
Parameter Versions and team member roles.

Product Breakdown Structure (PBS)

The PAD is called the Product Attribute Database because
we have found that all technical and administrative data
important to the development of a product or the completion
of a project can be thought of as attributes of products or
sub-products of the system being developed or delivered.
The first challenge is to find a way to organize the products
into a hierarchical set that decomposes the primary product
into groups of products each of which can be further broken
down to lower and lower levels. This hierarchical, tree-type
organization of products is called a Product Breakdown
Structure or PBS. A PBS is a tree-type structure in that each
product in the tree is the sum of a set of products that we
refer to as its children. For the purposes of a PAD there can
be as many levels of children as are needed to fully describe
a product structure, though even for complex space project
more than six or seven levels is typically not needed. It is
interesting and useful to note that a PBS can be defined for a
Program, a Project, a System, or any element thereof. As
such, a PBS for a subsystem can be thought of as a complete
PBS although it is only a component of a larger system PBS
in a larger project structure that may be part of a program.

Before building a PBS it is necessary to have at least a
rudimentary functional architecture of the system and an
idea of what a product is. The development of the
functional architecture of the system is the role of system
engineering and is not addressed in this paper. We have
found that it is useful to think of products as any hardware,
software, documentation, presentation, or mission
operational event that is accomplished by the Project Team.
Treating mission operational events as products is difficult
and requires subtle distinctions. The types of events that can
be valid products do not include the completion of
developmental milestones, delivery of products, or the
completion of a project phases. An event is only a product if
the completion of the event per-se constitutes a product. A
specific maneuver that is detailed in a requirement on a test
flight in an aircraft development and a trajectory correction
maneuver in a space project are both operational events that
are valid products. It is necessary to treat mission
operational events as products because certain technical
parameters are attributes only of events and would otherwise
have no valid place in a PAD. For example, a trajectory
correction maneuver has delta-V as an attribute and a test
flight has a maximum rate of climb as an attribute. Both of
these attributes are engineering data that make more sense to
associate with operational events than with hardware or
software.

We have found in using a PBS to organize information
describing attributes of products that many of the same best
practices that are found in the literature for how to build and
maintain a PBS for a project using paper systems are still
applicable. In addition, the first few levels of a space
project PBS look like a product oriented Work Breakdown

Structure (WBS). A few of the best practices or guidelines
we have found useful in building a PBS for a project
database system are listed below:

Ensure that every product is a product:
- Services, support, and project phases are not

products
- Management and system engineering can be

expresses as products. Management produces
products like implementation plans and reports.
System engineering produces produce interface
specifications and requirements.

Use Specific (Not Generic) Product Names
- e.g., Buttery Control Electronics, Not Electronics
Ensure that the children of a product form the parent
when taken together
- If something else is needed to form the parent, the

Don’t confuse your PBS with your document tree or
PBS is wrong

your org-chart
- But be clear about the relationships between them
- A PBS may include documents which may be

- A PBS may be closely related to the organization

Products from support activities including management,
system engineering, rework, retest, and refurbishment
should be treated as part of the appropriate product (a
child of), not as a stand alone hierarchy
Non-recurring and recurring classifications are not
separate products, but may be separate attributes
Attributes and values are not specified in product names
- Instead of using .9N Thruster, use Thruster
Software that is developed to reside on specific
equipment should be part of (a child of) that equipment
in the PBS

legitimate products

chart

Attribute

The primary purpose of the PBS in the PAD system is to
provide a product structure to which technical and
administrative data can be tied. Any technical or
administrative data that one might want to tie to a PAD can
be though of as attributes of the products in the PAD. An
attribute is a measurable description of a product. Attributes
can be variable, like power consumption, or they can be
constant, like net dry mass. In addition, attributes can be
state dependant or independent of state. For example, mass
does not change when you turn something on or off, but
power consumption does. Most attributes are numerical in
nature and they have units (Voltage (v), Mass (kg), and
Power (W) are examples), but attributes don’t have to be
numerical. For example, material type is an example of an
attribute that is not numerical.

As with products it is important to use best practices and

conventions in working with attributes in a PAD. The first
area this applies to is in naming attributes. An important rule
here is to use specific terms including units, if applicable, in
place of generic terms that can mean many things. For
example, Power is not an acceptable attribute name, but
Total Power Consumed (W) and Power Consumed ut 28
Volts (W) both might be appropriate attributes of a piece of
electronics. Similarly, the term Energy is not a good
attribute to describe a battery because there are many
different energies associated with a battery. Total Buttery
Capacity (J) and Battery Charge State (J) would be better
attributes of a battery system.

We have found that in assigning attributes it is not always
obvious which product an attribute belongs to. For some
attributes, like mass, it is easy. For others, like temperature,
untrained personnel tend to want to put the attributes in
different places. For example, some people want to assign
temperature to the thermal control system, while others want
to assign it to the item whose temperature is being
controlled. This confusion is a problem because it can make
it difficult to know where in the database to get the
information one seeks. We have found, empirically, that the
system works best if control attributes are attributes of the
product being controlled, not the control system. This way
users always know where to find attributes of a product.
Under this convention, peak temperature is not an attribute
of a thermal control system, but is an attribute of a battery,
an electronics box, a slice, or a propellant tank. Likewise,
pointing jitter is not an attribute of an ACS system, but it is
an attribute of a platform controlled by an ACS system.
Pointing knowledge would however be an attribute of the
ACS system.

State

As mentioned previously, attributes can be state dependent.
As such, it becomes necessary to track the states of a
product as well at its attributes. For the PAD, a state is an
operational condition or mode that effects the value
associated with an attribute of a product. In general,
different products have different sets of states. For example,
valves are typically either “open” or “closed” but electronics
are typically “on”, “off”, or “standby”, and can have many
other important states. Defining product states is required to
track how attributes of a product change with operation. For
attributes that don’t change with state, typically the dry mass
of a bolt does not change with operation, the “All” state is
used.

In using states it is important to keep in mind that specific
events are not states. For example, TCM-27 (trajectory
correction maneuver number 27) is not a state, but Thruster
Firing might be. Likewise, project phases are generally not
states, but they might be Value Names (see below) or
Attributes. A few reasonable examples of states are BOL or
EOL for beginning or end of life, Launch, Cruise, On, Off,
Standby, Warm-up, Beginning of Blowdown, and End of

Blowdown. An attribute that has been assigned a product
and a state forms a Parameter. A few examples of
parameters are listed in Table 1 .

Solenoid Valve Open Power Consumption
(W)

Star Tracker Calibration Data Output Rate
(bm) Mode

Battery All Max Allowable
Temperature (K)

Value Name and Versions

If human beings and the products they build were perfect,
the logical structure of the PAD could end with parameters,
and numbers or other types of values could be kept at the
parameter level in the database. Unfortunately, there are
many different versions of any given number a product
development team must track. To help, we have created the
Value Name field in the PAD to provide a simple designator
or name of the different versions of PAD parameters.
Examples of different Value Names or Versions of a given
parameter might be Vendor Specification, Subsystem
Requirements Document, CBE (for Current Best Estimate),
Allocated, Max Tested, Min Tested, and Project Official
Version. Note that in most cases the Value Name indicates
the source of the data.

In the practical use of the PAD technology in our pilot
projects we have found that one group of parameter versions
stands apart from the rest in terms of how the project team
uses them. The group in question is the requirements
versions. To make it possible for requirements to be treated
differently in a PAD we have created another database field
called the Requirement Type. The Requirement Type is a
flag the PAD Database uses to identify requirements and

make it possible to search on a subset of possible
requirements violations. In addition the Requirement Type
filed can make it possible for contents of a requirement
parameter to be written into the database only from the
official project documentation, which typically exists not in
paper form, but in a document system such as DOORS.

Table 2. Example Showing PAD Fields and Corresponding

If a Parameter Version is a requirement, the Requirement
Type field can be set to Max, Min, or Nom (for Nominal).
Quantifiable requirements are typically Max or Min, while
qualitative requirements are typically Nom. For example, if
a space project has a requirement not to use a plutonium
power source, as all Discovery missions do, there might be a
parameter version with the database fields in PAD populated
as shown in Table 2. This example is actually a completed
version of a parameter, or a Parameter Version. A
Parameter Version is a unique combination of Parameter,
Value Name, and Requirement Type. Table 3 provides a few
more examples

Note that in this table the last two Parameter Versions are
versions of the same Parameter, namely the ACS Thruster
Temperature in the On State. One of the versions is the
maximum temperature as specified in the requirements
document, the other is the minimum temperature. These
requirements are placed on the thermal control system in the
thermal control system requirements document and linked to
the PAD at publish time using the C-API. Once Parameter

Table 3 . A Few Examples of Parameter Versions That Might be Found in a Project PAD

I Power Svstem ~1 Use of Pu I All I Proiect Reauirement I Nom I ~~ ~~~

Star Tracker I Output Rate (bps) I On I Max Tested
Min ACS Thruster I Min I-Bit (Nos) I Cold I Propulsion Sys Req.
None

ACS Thruster

Min Propulsion Sys Req. Cold Specific Implies (s) ACS Thruster
Min Propulsion Sys Req. On Specific Impulse (s) ACS Thruster

None Max Tested Cold Min I-Bit (Nos) ACS Thruster
None Max Tested Cold Min I-Bit (Nos)

ACS Thruster I Temperature (K) I On I Thermal Control Req.
Min ACS Thruster I Temperature (K) I On I Thermal Control Req.
Max

Versions have been defined they can be populated with data.
The data that a Parameter Version holds is referred to as the
Value of the Parameter Version. Values are typically
numbers and can be up to 100 characters.

Product Owners and Value Owners

The database recognizes two types of people who can enter
data into a PAD: Product Owners and Value Owners. A
Product Owner is a person who is responsible for (has
control of) a product. The owner of a product is also an
owner of all of all the children of the product, and their
children. By recursion this ownership extends all the way
down throughout the PBS. For example, a spacecraft may be
composed of several systems: a science system, a propulsion
system, a telecommunication system, and others. The
Product Owner of the spacecraft would also be the Product
Owner of the science system, propulsion system, and the
others although each of the others should also have its own
individual Product Owner.

Product Owners have the following roles the development
and use of a PAD:

Creating, editing, and deleting products.
Assigning parameters and parameter versions to their

Assigning Product Ownership to lower level products
0 Assigning Value Owners to Parameter Versions.

products.

While Product Ownership authority extends down through

the PBS, the recommended practice is to have the lowest
level Product Owner who has the authority to act in the
database be the person who actually executes database
functions. This way, high level Product Owners are not
overwhelmed with the amount of data they are responsible
for developing and maintaining.

Another type of person recognized by the database is the
Value Owner. Value owners are the people responsible for
numerical or other type of the value and description of the
corresponding parameter version. Examples of Value
Owners might include a system engineer who will take
ownership of the requirements versions, a test engineer who
may own versions related to testing, and the Cognizant
Engineers (CogE’s) who may own current best estimates.
The Value Owners put the actual values of parameters into
the database.

Description Fields

Several description fields are available in the database
where the people who populate the database can write
descriptions of the data to provide data users the information
they need to make effective use of the data. The most
important of the description fields are the Product
Description, Parameter Description, and the Value
Description. Product Descriptions are the first step in
developing an on-line data dictionary for a project and are
analogous to a Work Breakdown Structure (WBS)
dictionary. The Product Description should be a sentence or

Figure 2 The PAD Database Schema

so of text that identifies the product to the extent that it is
non-obvious from its name. Likewise, the Parameter
Description records the technical meaning of each parameter
for Value Owners and other users. The parameter
description should tell users anything that is non-obvious
from the product name, product description, attribute name,
and state name. Parameter Descriptions most often focuses
on clarifying exactly what the attribute means. Value
Owners use the Value Description field to communicate how
a number was produced, how reliable it is, and any
limitations that should be placed on its use. A general
warning for PAD users is to read the Value Description
before using any value found in the database. Value
Descriptions typically include assessments of how accurate a
number is, when the Value Owner plans to update it, and a
reference to more information if it is needed.

4. DATABASE SCHEMA AND SECURITY

The PAD database schema and security features were
developed to support the naming convention and logical
structure outlined in Section 4 of this paper.

The schema, which is shown in Figure 2, contains 12 tables
and corresponds closely to the naming conventions
discussed earlier. The def-products, def-states,
def-attributes, and def-value-names tables all contain the
user defined lists of products, states, attributes, and value
names. Requirement types do not require a table to store
their definitions, as this dimension of the data is restricted to
only four values, "None", "Min", "Nom", and "Max", and is
not user-modifiable. The product-comp table records the
parent-child relationships between products; a product that
appears as a child more than once in this table appears more
than once in the PBS, and these instances of the product are
considered "linked". The def-pbs-levels table records the
names of each level of the product breakdown structure. The
def-params table records the defined combinations of
products, attributes, and states to form parameters, while the
def-param-vers table records the defined combinations of
parameters, value names, and requirement types (for

historical reasons requirements type designators are stored
in a field called "value type" in the schema) to form
parameter versions. The staff table contains the project-
defined list of users who can be either product or value
owners, as well as contact information on each.

The temp-product-hierarchy table circumvents a constraint
on queries within Oracle SQL preventing the combination of
a PBS navigating query with table joins. The
temp-product-hierarchy table provides a location for users
to store an organized PBS (generated through a stored
procedure), after which they can execute queries joining the
temp-product-hierarchy table with the other tables in the
database.

The triggers in the PAD perform a variety of functions,
primarily clerical and security. The clerical functions
include generating a new ID number for a record based upon
a sequence, recording the username of a user that
manipulates the data, and recording the datehime at which
the data was altered. The security functions are concerned
primarily with enforcing the rules associated with product
and value owners. Product Owners are able to create sub-
products, parameters, and parameter versions at any level
beneath a product they own, as well as being able to define
and modify attribute, state, and value name definitions. As a
part of defining a sub-product or parameter version, a
Product Owner may assign a sub-product Owner or a value
owner. Value owners are allowed to alter the value of an
existing parameter version for which they are the Value
Owner.

5. C-LANGUAGE APPLICATION PROGRAMMING INTERFACE
(C-API)

The PAD C language, Application Programming Interface
(C-API) enables high performance engineering tools access
to technical parametric data through a standardized suite of
function calls. Direct PAD access reduces the possibility of
erroneous design tool output due to human data input errors.
Use of the C-API enhances productivity by programming the

TCP-IP

Figure 3. A Simplified Diagram Showing the Interface Between Design Tools and the PAD

data population and storage into the design tool, thus
removing the chores of locating the most-recent data and
archiving results.

Our investigation into popular engineering design tools
discovered that many do not provide any database access
through ODBC (open database connectivity). ODBC is an
industry standard protocol for access to commercial
database engines. Fortunately many tools were written in the
C language and provide access to user-developed C code.
With this in mind, the PAD C-API acts as a wrapper around
ODBC giving engineering tools the benefits of database
connectivity.

The C-API is a suite of function calls housed either in a
library (.lib, .dll, etc.) or as object files used to compile with
a design tool (Statemate, Foresight, etc.). The function calls
contain structured query language (SQL) that communicates
with the PAD. The SQL is passed via TCP/IP networking
protocol to a dispatcher daemon running on a Sun
workstation. The daemon enacts ODBC calls to the PAD
and will package any return data and return it to the client C-
API. The C-API parses the page from the dispatcher and
returns it to the design tool. An important advantage to this
architecture is the ability to run engineering design tools on
many different workstations without having to configure
ODBC settings on each. Any updates to the PAD schema
and corresponding SQL will result in a change to the
underlying code of the C-API; the design tool need only
update the old library.

Figure 4 The PACT main menu.

6. SPREADSHEET TOOLS

The PAD system includes several features that are built into
common office software including Microsoft’s Excel
spreadsheet application. The Excel based tools include the
Product Attribute Conversation Tool (PACT), Publish and
Subscribe spreadsheets, and the Bulk PBS builder. A brief
description of each of these tools is provided next.

PACT: The Product Attribute Conversation Tool

PACT is an Excel-based software application designed to
support user interaction with the PAD. We envisage that for
most users PACT will be the primary tool for searching and
modifying a project’s PAD. PACT makes it possible for
users to access PAD data in a read-only mode or read-write
mode.

PACT is a productivity application that allows users to read
and write to and from the database and browse and search
the database in many ways. The PACT main menu, which
lists some of the available features, is shown in Figure 4.
PACT uses Excel’s Visual Basic for Applications (VBA)
language to support rapid deployment of new features
requested by users. In addition to the Excel implementation,
we have also recently initiated a web-based implementation
of the PACT and a stand-alone version, both of which are
being developed in Java and are scheduled to be in beta test
this spring for release in the fall. The existing VBA version
of the PACT application can be viewed as a rapidly
developed prototype. In the use of this prototype we have
learned about which features are most important, and we are
keeping the best for the Java implementation.

PACT incorporates all necessary functionality to manage
project parametric data into a single desktop tool. PACT’S
design rules mandate simplistic user-screens fashioned
toward consistency, and recognizable functions. PACT has
the ability to create, or modify product breakdown structures
(PBS). Products, and their child-tree products can be
deleted, created, or moved through a series of mouse clicks.
Parameters and parameter versions can be created en-masse
through simple drag & drop interfaces. Project staff
members can be created in the PAD and have their
personnel contact information updated through PACT.
Product and parameter version ownership is assigned with
mouse clicks.

PACT provides two different searching capabilities: generic
and exception. Generic searching outputs parameters or
parameter versions for a specified product and, if desired, its
children. The parameters can be filtered through a selection
attribute, state, value name, requirement type or any
combination there-of. A list can be compiled in the results
window and later exported to an Excel spreadsheet.
Exception searching enacts predefined parameter searches
based on Product Ownership, date, or failed requirements.

Typical PACT use scenario’s can include group or
individual settings. In one application teams can use PACT
during meetings to identify failed requirements and discuss
their impact upon the mission. Requirements or designs can
consequently be modified on the spot. PACT’s design rules
mandated that usage scenarios would not fully determine its
design. Our goal is to provide a base set of functionality and
let the user create their own scenarios that best fit their
requirements, work-style, etc.

Data can be exported from many different PACT user
screens into Excel spreadsheets. This feature is useful in
creating reports, populating the publish & subscribe PAD
workbooks, and for convenient desktop storage of PAD
data.

Publish and Subscribe Workbook

The PAD publish and subscribe workbook enables
Microsoft Office tools easy connectivity to PAD data
through Excel. The workbook contains two worksheets:
Publish, and Subscribe. On the Publish worksheet,
parameters are written or archived to the PAD. The
subscribe worksheet allows the user to read from the PAD to
spreadsheets on the client machine. Setting” up the publish
and subscribe parameters is facilitated through PACT’s
export feature. PACT’s generic search functionality allows
compilation of desired parameters in a format that models
the publish and subscribe columns. Once initiated, the
publish and subscribe sheets acquire and archive PAD data
with a menu item click.

The publish and subscribe worksheets have many uses, the
most common being integration of simple budgeting tools
and standardized reports. For example, subscribed mass data
is input for mass distribution graphs and margin tables that
are linked to PowerPoint slides. Before (or during) a
monthly review, the latest data can be subscribed,
automatically updating the presentation with the latest mass
data in a matter seconds.

The publish and subscribe workbook is also available as an
Excel add-in. The add-in provides very simple integration
with pre-existing models and reports. The add-in contains all
the code for publishing and subscribing; in addition, it
generates (if needed) the publish and subscribe worksheets.

The Bulk PBS builder

There are two ways to create products in PAD. Depending
upon where the projects life cycle is will dictate which way
is best for you. The first and probably most common method
is to create a product inside a PAD where the product
breakdown structure is currently defined. The second is to
create products and product breakdown structures
simultaneously. The latter is usually used during PAD
initialization, or during large expansions of the product tree.
The PBS Builder can be used to initialize a PAD or add an
extended branch into an existing PBS. The PBS Builder is
intended to allow the user to enter a large PBS into a PAD
very quickly, rather than entering the products individually
through the PACT.

ATLO
ATLO
ATLO
ATLO
ATLO
ATLO
ATLO
ATLO
ATLO
Integrated and Tasted Systems
Test Plan

~~

Test R i p a t
Test Support Equpment

ATLO
Integrated and Tested Systems
Test Pian
Test Report
Test Support Equipment

CBE
CBE
CEE
CBE
CBE

.”

None 123
None 126
None 124
None 125
None 127

F i g u r e 5 PACT’s generic search user-screen. I ~ ~ _ _ ~

7. STATUS AND FUTURE PLANS

The PAD system is a new approach to integrating
information systems to support rapid development of high
quality products. While this approach is still in its infancy,
some of the lessons learned so far include a set of best
practices that have been outlined in this paper and the
awareness that an organization should not attempt to deploy
a system such as this without pilot activities to develop
operational scenarios. In addition, no integrating database
such as the PAD should be put into the hands of untrained
users. While the information system itself is fairly simple
and essential tools such as the PACT and the Publish and
Subscribe sheets can easily be learned in an hour or so, the
ability to generate and use effective content requires
significant training. Our experience is that Product Owners
should receive no less than about 6 hours of training
including 3 hours of theory and 3 hours of hands on work in
the presence of an experienced instructor. Value Owners
require about 2 hours of training on the theory and about an
hour and a half of hands on training with the tools before the
can make the most effective use of the system.
Version 1 of the PAD system has completed beta testing and
has been used in small pilot activities with a few projects at
JPL. At present we are observing the use of the Version 1
system with those pilot projects as its application grows to
determine which features are most helpful and which should
be eliminated. This information is being incorporated into
the Version 2 system that we hope and expect will be the
system that is applied universally to flight projects at JPL.

While JPL is planning on using the PAD system for space
projects including flight systems, missions, and instruments,
there is nothing about the design of the database or its usage
scenario that is unique to space or even aerospace projects.
It is our hope that this system or systems like it will be used
for all types of complex product development processes to
reduce the tedium associated with engineering and
administrative functions, reduce errors, improve product
quality, and reduce development time and cost. Those
interested in learning more about the PAD system should
feel free to contact the first author of this paper for
additional information as it becomes available.

ACKNOWLEDGEMENTS

The authors would like to express their appreciation to the
rest of the PAD development team for their hard work and
intellectual contributions. Mr. Craig Peterson of JPL is
acknowledged for his contributions to the development of
usage scenarios and product testing in the context of our
pilot with the Space Interferometer Mission (SIM) project.
Adrian Gody is acknowledged for developing the C-API and
associated documentation. Justin Tenicsi and Troy Schmidt
are acknowledged for their contributions to developing the
PACT user interface and for product testing. The authors
would also like to express their appreciation to the Outer

Planet Solar Probe (OP-SP), SIM, and Deep Space 4 Project
teams for providing product information and testing of the
PAD systems and processes.

BIOGRAPHIES

Joel Sercel is a principal
engineer at the Jet Propulsion
Laboratory and is a Visiting
Associate and Lecturer in
Aeronautics at the California
Institute of Technology. Dr.
Sercel has innovated in the
areas of spacecraft
technology, space systems
engineering, and product
development processes and
tools. In the early 1990’s
along with Dr. John Brophy
of JPL, Sercel conceived of
and defined the NSTAR L
project which has culminated in the flight of the world’s first
deep space ion propulsion system on the New Millennium
Program’s Deep Space One Mission. Dr. Sercel is the
Director of a laboratory at Caltech which specializes in
developing tools and techniques to improve the productivity
of space mission and system product development teams and
he teaches a graduate level course at Caltech in Space
Missions and Systems. Finally, Sercel consults in the area of
information system assisted collaborative engineering and
teaches short course in space systems engineering and
methods of collaborative design and engineering.

Thomas F. Clymer is an Associate Engineer at the Jet
Propulsion Laboratory, where he has worked for the past
two years, primarily as the primary programmer of the PAD
system and related development activities. Mr. Clymer
designed the PAD database schema and implemented the
database and its triggers. He also wrote most of the code for
the PACT user application. Prior to this, Mr. Clymer was a
student at Caltech where he received his MS in Aeronautics
in 1996.

William M. Heinrichs is an Associate member of the staff
in the Jet Propulsion Laboratory’s Engineering Economics
& Costing group specializing in database projects. His
current activities involve coordinating the programming
team and collaborating in the design and implementation of
the PAD. In addition he is prototyping an inventory-analysis
database system for the Deep Space Network. Heinrichs
holds a BS in computer science and an MBA both from
Rensselaer Polytechnic Institute.

The research described in this paper was carried out by the
Jet Propulsion Laboratory, California Institute of
Technology, under contract with the National Aeronautics
and Space Administration.

